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ABSTRACT

The spatial variability of rain rate R is evaluated by using both radar observations and cloud-resolving

model output, focusing on the Tropical Warm Pool–International Cloud Experiment (TWP-ICE) period. In

general, the model-predicted rain-rate probability distributions agree well with those estimated from the

radar data across a wide range of spatial scales. The spatial variability in R, which is defined according to the

standard deviation of R (for R greater than a predefined threshold Rmin) s(R), is found to vary according to

both the average of R over a given footprint m(R) and the footprint size or averaging scale D. There is good

agreement between area-averagedmodel output and radar data at a height of 2.5 km. Themodel output at the

surface is used to construct a scale-dependent parameterization ofs(R) as a function ofm(R) andD that can be

readily implemented into large-scale numerical models. The variability in both the rainwater mixing ratio qr
and R as a function of height is also explored. From the statistical analysis, a scale- and height-dependent

formulation for the spatial variability of both qr andR is provided for the analyzed tropical scenario. Last, it is

shown how this parameterization can be used to assist in constraining parameters that are often used to

describe the surface rain-rate distribution.

1. Introduction

Although the spatial resolution of general circulation

models (GCMs) has continued to increase, many state-

of-the art models lack a physical representation of cloud

and/or rain spatial variability and continue to represent

convective and stratiform cloud processes using dis-

tinctly different formulations. To resolve convective

processes, a grid spacing of less than 4km is necessary

(e.g., Weisman et al. 1997), whereas resolving shallow

warm clouds requires orders-of-magnitude smaller grid

spacings. The GCMs used in the most recent Intergov-

ernmental Panel onClimate Change (IPCC) report have

grid spacings exceeding those needed to resolve con-

vection bymore than an order ofmagnitude (IPCC2007).

Therefore, in such large-scale models, representing the

spatial heterogeneity of cloud and precipitation charac-

teristics remains a subgrid-scale process. Moreover, the

use of different frameworks to represent stratiform

and convective clouds results in a somewhat arbitrary
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distinction between cloud types; in nature, there is a

continuum between these cloud types.

Recent advances in the representation of subgrid-

scale processes in climate models, for example, the

Cloud Layers Unified by Binomials (CLUBB) param-

eterization (Golaz et al. 2002; Larson and Golaz 2005;

Larson et al. 2012; Larson and Griffin 2013; Griffin and

Larson 2013) or the parameterizations of Cheng and Xu

(2009) and Boutle et al. (2014), use a unified framework

that can represent clouds and precipitation across vari-

ous scales and regimes. Such parameterizations are in-

herently designed to be used at grid spacings that exceed

those typically used for resolving convective processes.

These frameworks form the basis of the representation

of subgrid-scale processes. Knowing the spatial vari-

ability of a particular field can assist in constructing a

spatial distribution of that field, but for some fields, for

example, rain rate and rainmixing ratio, the relationship

between the spatial variability and resolved quantities

remains unknown. The CLUBB parameterization relies

on an assumed relationship between the mean rainwater

mixing ratio m(qr) and the standard deviation of the

rainwater mixing ratio s(qr) within raining regions (e.g.,

Larson and Griffin 2013; Griffin and Larson 2013).

Moreover, a similar relationship between the mean

rain rate m(R) and the standard deviation of the rain

rate s(R) is also of interest, specifically for diagnosing

the accumulated surface precipitation. Spatial means

and standard deviations are the focus of this work

(unless otherwise noted). Part of the goal of this work

is to look for a predictable dependence of s(R) on

m(R) and s(qr) on m(qr), and if so, to determine func-

tional forms for s(R) and s(qr) using well-resolved

quantities.

The tropics are the focus of this study (although re-

sults are presented in the appendix for a continental

convection case to illustrate the potential generality of

the results presented herein). This region is selected

because of the availability of high-quality radar data

from the Tropical Warm Pool–International Cloud Ex-

periment (TWP-ICE).

Furthermore, there are a few motivations for con-

straining s/m(R) and s/m(qr). 1) Understanding the

small-scale variability of R and qr is important because

many rain processes are highly nonlinear. 2) Unified

parameterizations may benefit from a functional form to

represent subgrid-scale variability in R and qr because

prognosing s(R) and s(qr) is both complicated and

computationally expensive. 3) GCMs tend to over-

predict the amount of light precipitation (i.e.,

,20mmday21) (e.g., Dai and Trenberth 2004; Dai

2006; Stephens et al. 2010), which has been attributed to

deep and shallow convective precipitation, especially in

the tropics (e.g., Stephens et al. 2010). A bias in surface

precipitation can have important feedbacks on sub-

sequent cloud formation and evaporative cooling. More-

over, verpredicting light precipitation can result in a low

bias in s(R). 4) Understanding subgrid-scale variability

in rain rates and mixing ratios is also important for

satellite-retrieved measurements (e.g., Meneghini and

Jones 1993), in which beamfilling parameterizations are

often necessary to accurately represent subpixel-scale

variability (e.g., Yang et al. 2006; Turk et al. 2008;

Sapiano and Arkin 2009; Wolff and Fisher 2009).

The remainder of the paper is organized as follows.

Section 2 describes the radar data and model simulation.

Section 3 discusses the analysis of the radar data and the

model output in the context of determining a useful and

robust functional form for s(R). Based on the model

output, section 4 presents an analysis of the spatial vari-

ability in qr and R as a function of height. This section

concludes with a scale- and height-dependent parame-

terization of the variability in surface rain rate and rain-

water mixing ratio. Section 5 reviews the main results of

this study and discusses the potential applications of the

findings herein. The appendix discusses an additional

simulation of a continental squall line in the context of the

results found for tropical convection.

2. Methods

a. CPOL radar data

The Australian Bureau of Meteorology (BoM)

operates a C-band (5.6GHz) polarimetric scanning ra-

dar (CPOL) near Darwin in the Northern Territory of

Australia (Keenan et al. 1998). The CPOL radar is a

real-time operational radar with a fixed 10-min scan

strategy that collects data from 16 conical sweeps at el-

evation angles from 0.58 to 428. It operated continuously

during TWP-ICE and included the 18–26 January 2006

period, providing rain-rate estimates every 10min for a

total of 1296 radar scans. By alternating between hori-

zontal and vertical transmit polarizations, the CPOL

radar measures reflectivity in two polarizations (Zh and

Zy) to estimate differential reflectivity Zdr (Kumar et al.

2013). Radial measurements of Zh and Zdr are collected

at 250-m range resolution and then resampled to a Car-

tesian grid with 2.5km 3 2.5km horizontal and 0.5-km

vertical resolutions (May and Keenan 2005). Using three-

dimensional linear interpolation, the NCAR-supported

Sorted Position Radar Interpolation (SPRINT) software

is used to convert constant-altitude plan position in-

dicator (CAPPI) observations onto the 2.5 km 3 2.5 km

horizontal grid (Kumar et al. 2013). The eight nearest

neighbors in azimuth, elevation, and range are used in
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the interpolation. Note that prior to conversion to a

uniform grid, Zdr and the specific differential phase Kdp

are filtered in range to reduce random fluctuations

using a finite-impulse response filter (Hubbert and

Bringi 1995; Bringi et al. 2009). At a range of 50 km,

approximately 30 polar-coordinate samples are pro-

cessed to estimate the reflectivity Z, median raindrop

diameter D0, and R for each 2.5-km square pixel. Be-

cause CPOL is a polarimetric radar, the rain rate is es-

timated using one of three functions depending on the

observed Z, Zdr, and Kdp. This estimation is performed

using the threshold and decision tree described in Fig. 2

and Eqs. (1)–(5) in Bringi et al. (2009).

Because of Earth’s curvature, scanning radars cannot

observe close to the ground at large ranges. Thus, grid-

ded rain rates are analyzed at a height of 2.5 km so that

the observations extend to nearly 150km from the radar,

which is sufficiently large to define a 200-km square

domain. Figure 1 shows an example of the CPOL rain

rates estimated at a height of 2.5 km with a grid spacing

of 2.5 km (Fig. 1a includes the coastlines for reference).

The CPOL radar is located in the center of the grid; only

pixels with rain rates of at least 0.07mmh21 are shown

with color in Fig. 1. The CPOL minimum detectable

signal at 150 km corresponds to a reflectivity of ap-

proximately 8.5 dBZ. To ensure uniform spatial statis-

tics, only pixels with reflectivity of $8.5 dBZ were

processed. This reflectivity corresponds to a minimum

rain rate of 0.07mmh21 through the Z–R relationship

defined by Eq. (5) in Bringi et al. (2009).

To highlight the analysis performed in this study, a 53 5

matrix of 40 km 3 40 km grid boxes is superimposed on

FIG. 1. (a) Sample grid boxes overlaid on a map of the coastlines. The red dot indicates the

location of the radar. (b) Sample of CPOL rain-rate estimates (shaded; mmh21) at a horizontal

resolution of 2.5 km and at a height of 2.5 km. The 5 3 5 matrix of boxes represents 25 grid

boxes, each with a length and width of 40 km. The gridbox numbers are used in Fig. 2.
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the rain rates shown in Fig. 1. The 40km 3 40 km grid

boxes represent a numerical model with a 40-km spatial

grid; the observed rain rates represent the subgrid-scale

variability that cannot be explicitly resolved by a large-

scale numerical model. For each grid box, several rain-

rate statistics are calculated, including the conditional

(within rain) mean rain rate m(R), the conditional (within

rain) rain-rate standard deviation s(R), and the rain

fraction fR. The ‘‘conditional’’ calculations imply that

rain rates below a predefined minimum threshold (i.e.,

Rmin 5 0.07mmh21) are omitted when estimating m(R)

and s(R). The rain-rate statistics are only computed for

grid boxes in which at least 10% of the region contains

precipitating pixels.

The rain-rate statistics for each of the 25 grid boxes

depicted in Fig. 1 are shown as scatterplots in Fig. 2. The

symbols used in each panel correspond to the grid

numbers shown in Fig. 1. Figure 2a shows s(R) as a

function of m(R); the thin line indicates a 1:1 line. To

help highlight deviations from the 1:1 line, Fig. 2b shows

s/m(R) as a function of m(R). As will be discussed in

section 2c, this ratio provides information on the shape

of the rain-rate distribution (for well-sampled distribu-

tions), in which a value of 1 corresponds to an expo-

nential distribution (e.g., m 5 0, where m is the shape

parameter of a gamma distribution). Figure 2c shows the

rain fraction as a function of m(R). Note the corre-

spondence between the calculated low rain fractions in

Fig. 2c and the grid boxes with only a few raining pixels

in Fig. 1.

In this study, each 200-km domain containing CPOL

rain rates (and the modeled rain rates discussed in the

next section) is resampled using grid boxes with di-

mensions ranging from 10 to 60km to generate statistics

of s(R), m(R), and fR as a function of spatial scale.

b. Model simulation

The Weather Research and Forecasting (WRF)

Model is used to simulate the TWP-ICE intensive

operating period (IOP). Input and forcing fields are

obtained from Fridlind et al. (2010). The following

assumptions are made with regard to the simulation

(Fridlind et al. 2012). The sea surface temperature is

fixed at 298C. The horizontal boundaries are assumed

to be periodic. Radiative forcing is applied to mimic

the diurnal variation in insolation over the Darwin

Atmospheric Radiation Measurement Program site.

The simulation is run for 16 days (only 10 days of which

are used in the subsequent analysis; more details fol-

low in the next section). The horizontal winds are

nudged above 500m to observed profiles with a 2-h

time scale. Large-scale advective forcings of potential

temperature and water vapor are applied based on

observations; these forcings are applied below 15 km

and linearly decrease to zero at 16 km. The water vapor

and potential temperature are nudged to observed

profiles with a 6-h time scale; these fields are nudged

above 16 km and linearly decrease to zero at 15 km.

The domain is 200 km 3 200km in the horizontal di-

rection, extending to 24km in the vertical direction. The

horizontal grid spacing is 500m, and the vertical grid

spacing is approximately 100m at the surface, 300m at

z5 10km, and.1000m above z5 18km. The time step

is permitted to vary between 1 and 16 s depending upon

the Courant number at any given time step so that qui-

escent periods can be quickly simulated while main-

taining numerical stability during more active periods.

Both longwave and shortwave radiative fluxes are com-

puted using the Rapid Radiative Transfer Model param-

eterization. A two-moment bulk microphysics scheme

with fixed droplet number concentration (100cm23) is

utilized in this study (Morrison et al. 2009). To test the

FIG. 2. Statistics calculated for the 40-km grid boxes shown in

Fig. 1; the symbols correspond to the individual grid boxes. The

statistics include (a) s(R) vs m(R), (b) s/m(R) vs m(R), and (c) fR vs

m(R).
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robustness of the results, an additional simulation with a

higher droplet number concentration (500 cm23) was

performed. The results of the two simulations were

found to be largely indistinguishable when analyzed

over the course of the IOP.

To generate consistent statistics between the modeled

and observed rain rates, themodel output is averaged to a

2.5-km horizontal grid at a height of 2.5km. For the pur-

pose of formulating parameterizations that can be readily

implemented into large-scalemodels, themodel-predicted

rain rates and rainwater mixing ratios at the inherent

model grid spacing (i.e., 500m) are used. Last, all R and

qr are conditionally averaged by assuming Rmin 5
0.07mmh21, which corresponds to the minimum rain

rate detected by the radar, and qr,min 5 0.0001 g kg21.

c. Theory describing expected s/m(R)

It is assumed that the rain-rate distribution p(R) can

be described by a gamma distribution (e.g., Cho et al.

2004):

p(R)5
1

G(m1 1)um11
Rm exp(2R/u) , (1)

wherem is the shape parameter, u is the scale parameter,

and G() is the Euler gamma function. Assuming that the

rain-rate field is sufficiently sampled, the expected mean

m(R) and variance s2(R) can be defined as follows:

m(R)5 (m1 1)u and (2)

s2(R)5 (m1 1)u2 . (3)

From these relationships, the ratio of s(R) to m(R) can

be written as

s/m(R)5s(R)/m(R)5 (m1 1)21/2 . (4)

Equation (4) shows that s/m(R) is an inverse function of

the gamma shape parameter. In specific terms, for an

exponential rain-rate distribution (i.e., wherem is 0), the

ratio is unity, and the ratio becomes less than unity asm

increases. Equation (4) can be rearranged to solve form:

m5

�
s(R)

m(R)

�22

2 1, (5)

suggesting that the shape parameter can be diagnosed

from s/m(R). Alternatively, if m(R) is known (e.g.,

prognosed in a large-scale model or retrieved from sat-

ellite observations) and one can determine s(R) based

on a parameterization (this study), one may also be able

to determine the shape parameter of the gamma distri-

bution needed to fit the rain-rate distribution.

3. Results

a. Comparison between observations and model
output at z 5 2.5 km

We first explore similarities and differences between

the radar-retrieved and model-predicted rain rates,

both area averaged to a 2.5-km horizontal grid at a

height of 2.5 km (unless otherwise noted, the model

output is discussed herein after performing area aver-

aging). Figure 3 shows a time series of 3-hour-averaged

radar-retrieved (black) and area-weightedmodel-predicted

(red) rain rates at a height of 2.5 km. The blue box

corresponds to the period selected for analysis herein.

By neglecting the initial 48 h, we are assured that a suf-

ficient amount of time is allowed for model spinup. The

period encompasses 10 days. Overall, the two time series

correspond well to one another. There are some differ-

ences in the rain fraction at any given time. As shown

later, however, this overestimate in the rain fraction has

little to no effect on the characteristics of the overall

rain-rate distributions when compared with the radar

data.

FIG. 3. The 3-h average (top) rain-rate and (bottom) rain-fraction

time series for both the CPOL data (black) and the model output

(red). The blue box corresponds to the period of focus in this study,

encompassing both the active and suppressed phases of the summer

monsoon.
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Figure 4 shows a comparison of the autocorrelation

functions, which provide a sense of the spatial correlation

of the investigated fields. For the purpose of this study,

the autocorrelation functions are calculated only for

linear bands of rain that contain at least 10 contiguous

raining points. The calculation is performed for linear

bands in both the zonal and meridional directions to

explore the potential for asymmetry in the spatial pat-

tern of precipitation in either the radar data or themodel

output. The thin horizontal line corresponds to a value

of e21; therefore, the point at which the autocorrelation

function crosses this threshold represents the e-folding

distance. Again, we find fairly good agreement between

the model output and the observations at a height of

2.5 km. Moreover, there tends to be good agreement in

the autocorrelation functions in the zonal and meridio-

nal directions, suggesting an e-folding distance of 4–5km

and complete decorrelation at a distance of 10–12km.

Figure 5 shows PDFs of R [or m(R) for the resampled

datasets] for both the inherent resolution of the radar

data and the model output and for different sampling

footprints (Table 1) (note that the data are only spatially

averaged; no temporal averaging is performed). Again,

we find good agreement between the radar-retrieved R

and the model-estimated R even across a wide range of

footprint sizes D. The PDFs suggest that the distribution

of R is superexponential for small D. As D increases, the

PDFs become more exponential in nature. This shift in

the shape of the R PDFs highlights the fact that s/m(R)

varies as a function ofD or, in other words, that s/m(R) is

scale dependent.

Agreement in the PDFs of R for different sampling

footprints provides some confidence that the model is

capable of predicting the observed rain-rate field at a

height of 2.5 km, although such distributions provide

only qualitative information on the variability of R

within a sampling footprint. We choose to use the

standard deviation of the rain rate [i.e., s(R)] to rep-

resent the variability within a box. Unless otherwise

noted, all values of s(R) and m(R) are conditionally

averaged over raining regions of a given footprint.

While dimensional reasoning may suggest that there

should be a direct linkage between m(R) and s(R),

especially if the R distribution is exponential (in which

case the ratio of these two quantities is identical to 1),

we can exploit the radar data and model output to in-

vestigate other potentially important variables that

explain the variability in R—for example, the rain

fraction fR. To do so, we computed Spearman’s rank

correlation coefficients between s(R) and both m(R)

and fR (at a height of 2.5 km). A common alternative is

the use of Pearson’s correlation coefficients; however,

because of the nonlinear nature of the resulting re-

lationships, Spearman’s rank correlation coefficients

provide a more robust measure of correlation that is

based on the monotonicity of a given relationship. The

results are listed in Table 2. The values suggest that

m(R) is highly correlated with s(R) in both the model

output and radar data (with similar correlation co-

efficients for the different footprint sizes). On the

contrary, very weak positive and negative correlations

are found between fR and s(R), suggesting that the

addition of this variable to the regressions discussed

below has little to no added value in constraining s(R).

To investigate further the relationship between s(R)

and m(R) and to elucidate additional evidence to

FIG. 4. Autocorrelation functions for the radar-estimated rain rates (blue) and model-predicted rain rates (red) at

a height of 2.5 km in the (a) zonal and (b) meridional directions. The shading denotes 61 standard deviation.
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demonstrate the overall good agreement between the

area-weighted model output and the radar data, we

first present a set of figures depicting s/m(R) as a

function of m(R) for various footprint sizes (Fig. 6)

at a height of 2.5 km. Again, there is good agreement

between the radar and model-derived joint PDFs.

Note that these are not subgrid-scale PDFs but rather

histograms that were created using a single value of

[s/m(R), m(R)] for each sampled footprint. The fol-

lowing inferences can be made from Fig. 6:

1) At small D, the most frequently occurring values are

s/m(R), 1 for m(R), 1mmh21 based on the model

output and s/m(R) of 0.2–2 for m(R) between 0.2 and

10mmh21 based on the observations. These ranges

are determined using the yellow and red regions

depicted in Figs. 6a and 6b.

2) For small footprint sizes, s/m(R) is typically less than

1; as the footprint size increases, the ratio increases,

approaching a mode of approximately 1.5–2 for both

the observations and the model output. If one

FIG. 5. Rain-rate PDFs for (top left) the entire domain and different sampling footprints. Shown are sampling

footprints for D of (top right) 10, (middle left) 20, (middle right) 40, and (bottom) 60 km, including both the CPOL

data (black) and the model output (red).

TABLE 1. Number of domains per radar scan and number of pixels in each domain for different square domain lengths.

Footprint (sample)

width/length (km)

Footprints per

radar scan

Pixels per

footprint (radar)

Footprints per

model output

Pixels per

footprint (model)

60 9 576 9 14 400

40 25 256 25 6400

20 100 64 100 1600

10 400 16 400 400
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assumes that the rain-rate distribution is gammalike,

a value of 1 corresponds to the special case of an

exponential distribution within a sampled grid box.

The asymptotic behavior [i.e., reduced spread in the

ratio of s(R) to m(R) and convergence to a single

mode for increasing D] is because the sampled grids

contain a sufficient number of points to construct a

distribution without substantial truncation or gaps; in

other words, D is substantially larger than the decor-

relation length presented in Fig. 4.

3) The joint PDFs asymptotically approach (0, 0) for

small rain rates; this is an artifact of the lower threshold

used to conditionally average R (i.e., 0.07mmh21).

Because a lower bound is applied, the only way

for the mean to be equivalent to the lower bound is

if all points within a sampled grid have a rain rate

identical to the lower threshold; in this case, the

standard deviation is identical to 0.

The correlations presented in Table 2 suggest that fR is

very weakly (at best) correlated with s(R). To demon-

strate this relationship, we present joint PDFs of s/m(R)

as a function of fR in Fig. 7 for both themodel output and

radar data at a height of 2.5 km. The threshold used to

determine fR is identical to that used to determine both

s(R) and m(R) (i.e., 0.07mmh21). The distributions

determined from the model output and radar data agree

fairly well. Unlike the relationship for s/m(R) as a

function ofm(R), however, we find no robust behavior in

s/m(R) as a function of fR. There is a region of high

occurrence [corresponding to small s/m(R) and small

fR] that corresponds well to the region of high occur-

rence for s/m(R) as a function of m(R); beyond the re-

gion of maximum occurrence frequency, the relationship

quickly breaks down. For fR . 0.15, it is equally possible

for s/m(R) to be between 0.5 and 4 based on the model

output and between 0.5 and 2.5 based on the radar data.

Given this large spread in s/m(R) over such a wide range

of fR, a robust relationship between these quantities is

unlikely.

To bring us one step closer to the goal of formulating a

parameterization for s(R) at the surface, joint PDFs of

s(R) as a function of m(R) using the model output and

radar data rounded to the same precision are depicted in

Fig. 8 (unlike Fig. 6, whichwas on a linear–linear plot, this

figure has log–log axes). The 1:1 line is shown (dashed

black) for guidance. In addition, a nonlinear regression is

performed on both the model output and the radar data

to obtain fitting functions for s(R) as a function of m(R)

(red) using a power-law function:

s5 amb , (6)

where a has units of ‘‘(mmh21)12b’’ and b is unitless

[s(R) andm(R) both have units of millimeters per hour].

Unlike the s/m(R) relationship with m(R), s(R) as a

function of m(R) is more robust and, when plotted on a

log–log plot, the relationship is nearly linear. The only

exception to this finding is for low m(R) (i.e., near Rmin)

in which s(R) approaches 0. This decrease is again an

artifact of imposing a lower bound on R. In any case,

these points are very infrequent relative to the region of

maximum frequency of occurrence; therefore, the out-

liers exhibit little weight in the nonlinear regression

analysis. In addition, an examination of s(R) as a func-

tion of m(R) is more reasonable because s/m(R) can

attain very large or small values at the extremes.

While the power-law relationship inEq. (6) represents a

line passing through the observations or simulations, the

spread around the best-fit line can be quantified in two

different ways. First, the spread could be quantified by

estimating error bars for both fitted power-law parame-

ters. Alternatively, the observational spread around the

best-fit line could be quantified using PDFs. This study

uses the latter method and estimates PDFs of the co-

efficient a around the best fit by determining the nor-

malized coefficient a0 (Haddad et al. 1996):

a0 5s(R)/m(R)b . (7)

This normalization accounts for the power-law curve in

which a0 represents the distance from the best-fit line.

The a0 mean value is close in magnitude to the derived

coefficient, although the two quantities are not identical

because the normalization performed in Eq. (7) is dif-

ferent than the original power-law fitting method. In

addition, the spread in a0 represents the spread in the

observations while maintaining a constant exponent in

the power-law relationship (i.e., b). Figures 9a and 9b

show the distribution of a0 as normalized PDFs for the

model and CPOL observations, respectively. The sta-

tistics of these a0 distributions are listed in Table 3.

b. Determining a parameterization for s(R) at the
surface

The previous analysis focused on a direct comparison

of model output and radar observations at a height of

TABLE 2. Spearman’s rank correlation coefficients. All correla-

tions are calculation between the variables listed [i.e., m(R) and fR]

and s(R).

m(R) for

model

m(R) for

radar

fR for

model

fR for

radar

D 5 10 km 0.93 0.94 0.12 0.21

D 5 20 km 0.94 0.96 20.04 0.16

D 5 40 km 0.94 0.95 20.20 0.06

D 5 60 km 0.93 0.95 20.24 0.05
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FIG. 6. Normalized joint PDFs of m(R) (x axes) and s/m(R) (y axes) for different sampling footprints, i.e., (a),(b) D5 10 km, (c),(d) D5
20 km, (e),(f)D5 40 km, and (g),(h)D5 60 km. The frequencies are normalized to aid in the comparison of (left) model output and (right)

the CPOL data. The 1:1 line (dashed) and s/m 5 1 (i.e., indicative of an exponential distribution; solid) are also depicted for guidance.
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FIG. 7. Normalized joint PDFs of fR (x axes) and s/m(R) (y axes) for different sampling footprints, i.e., (a),(b) D 5 10 km, (c),(d) D 5
20 km, (e),(f) D 5 40 km, and (g),(h) D 5 60 km. The frequencies are normalized to aid in the comparison of (left) the model output and

(right) the CPOL data. Because there are a finite number of values for fR at any given D, the number of bins used to calculate the PDFs

ranges from 5 (D 5 10 km) to 50 (D5 60 km).
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FIG. 8. Normalized joint PDFs ofm(R) (x axes) and s(R) (y axes) for different

sampling footprints, i.e., (a),(b) D5 10 km, (c),(d) D5 20 km, (e),(f) D5 40 km,

and (g),(h) D5 60 km. The frequencies are normalized to aid in the comparison

of (left) model output and (right) the CPOL data. The 1:1 line (dashed black)

and fitted power-law model (red solid) are also shown.
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2.5 km, suggesting good overall agreement between the

two different datasets. A parameterization of surface

rain-rate variability may be more applicable for other

applications, for example, hydrometeorological stud-

ies. Therefore, we employ the model-predicted surface

rain rates at the inherent grid spacing (i.e., the output is

not area averaged to correspond to the grid spacing

used for the radar data) to formulate a rain-rate pa-

rameterization that can be easily implemented into

large-scale models.

Figure 10 portrays the joint PDFs for s(R) and m(R)

at the surface based on the model output. As was the case

at a height of 2.5 km, the joint PDFs suggest a power-law

relationship between s(R) and m(R) at the surface. The

fitted formulations are shown in the lower right-hand

corner of each panel [again, for s(R) 5 am(R)b, where

b is unitless and a has units of ‘‘(mmh21)12b’’].

To illustrate and parameterize the scale-dependent

nature of the s(R)–m(R) relationship, the parameters of

the power-law relationships are presented as a function of

D in Fig. 11 using the following linear relationships:

a5 x
1
1m

1
D and (8)

b5 x
2
1m

2
D . (9)

The parameters of these relationships are fit using or-

dinary least squares; the following values are obtained

(units are in square brackets):

x
1
5 0:54 [(mmhr21)12b] , (10)

m
1
5 2:123 1022 [(mmhr21)12b km21] , (11)

x
2
5 1:31 [unitless], and (12)

m
2
522:973 1023 [km21] . (13)

Figure 11 nicely illustrates that the exponent is fairly

similar for all D (red; slope of 20.002 97 km21). The

monotonic and essentially linear increase in the co-

efficient is also nicely illustrated [black; slope of 0.0212km

(mmh21)12bkm21].

As shown in section 3b, s/m(R) can be used to de-

termine m (i.e., the shape parameter) of the rain-rate

gamma distribution. Equation (6) can be rewritten as

follows:

s/m(R)5 amb21 . (14)

Inserting this equation into Eq. (5) results in the fol-

lowing expression for m as a function of m(R):

m5 (a2m2b22)21 2 1. (15)

Then, the formulations for a and b shown in Fig. 11 can

be used here to determine a scale-dependent formula-

tion for m as a function of m(R).

FIG. 9. Normalized PDF of a0 calculated for each power-law

relation at scales of 10, 20, 40, and 60 km. The distributions are

shown for (a) the model simulations and (b) the CPOL observa-

tions. The prime denotes the uncertainty in the fits.

TABLE 3. Statistics describing the distribution of the coefficient a0 in the power-law relation s(R) 5 a0m(R)b. The statistics include the

mean m, standard deviation s, and skewness g1 for a
0. Also shown are the 10th, 25th, 50th (median), 75th, and 90th percentiles.

Fitted parameters Statistics of a0 5 s(R)b

Footprint scale a b m s g1 10% 25% 50% 75% 90%

Model simulations

10 km 0.53 1.22 0.65 0.41 1.37 0.22 0.34 0.56 0.87 1.20

20 km 0.80 1.24 0.93 0.54 1.77 0.38 0.56 0.83 1.16 1.57

40 km 1.14 1.20 1.28 0.66 1.63 0.62 0.84 1.16 1.53 2.05

60 km 1.42 1.15 1.55 0.70 1.47 0.84 1.12 1.43 1.79 2.33

CPOL observations

10 km 0.59 1.16 0.68 0.34 0.64 0.27 0.43 0.65 0.89 1.14

20 km 0.80 1.16 0.87 0.36 0.96 0.45 0.62 0.83 1.06 1.34

40 km 1.01 1.13 1.09 0.41 1.39 0.65 0.82 1.02 1.28 1.58

60 km 1.14 1.12 1.20 0.42 1.50 0.77 0.94 1.14 1.40 1.70
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c. Discussion

Figure 8 illustrates two important results. 1) The ex-

ponent in the power-law relationship is nearly constant

for all footprint sizes and appears to be largely consis-

tent between model output and radar data. 2) The co-

efficient in the power-law relationship increases with

increasing footprint size, suggesting that the relationship

betweens(R) andm(R) is scale dependent. ForD5 10km,

the points within the footprint tend to be correlated

(see Fig. 4); hence, a complete PDF is not attainable

for such a small footprint size. As D increases, a more

complete PDF can be obtained within the sampled

region. For increasingly large D (i.e., beyond that

which is shown herein), the power-law fits approach

that attained when randomly sampling points in the

domain (i.e., the case in which the rain rate is spatially

uncorrelated).

To better illustrate the previous notion, Fig. 12 depicts

the joint PDFs of s(R) and m(R) and the corresponding

power-law fits in which the sampling is completely ran-

dom (e.g., 400 points are randomly selected from the

model output at a specific time for D 5 10km; this

process is repeated N times, where N is the number of

sampling footprints obtained using regular square foot-

prints listed in Table 1). In this case, D does not

represent a spatially cohesive portion of the domain;

instead, each footprint of size D is composed of the same

number of randomly selected points from the domain

FIG. 10. As in Fig. 8, but for the inherent model resolution at the

surface.

FIG. 11. Fitting parameters a (red) and b (black) as a function of

D based on the output of the high-resolution model at the surface.

The values of x1, x2, m1, and m2 are given in Eqs. (10)–(13).
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at a given instance in time (with replacement) to gen-

erate N samples that mimic a footprint of size D except

with no spatial correlation between adjacent points. We

find that both the coefficient and the exponent of the

fitted power-law relationships are nearly invariant as a

function of D (the leading coefficient is slightly smaller

forD5 10km, suggesting that more points are needed to

sufficiently sample the rain-rate PDF). If the rain-rate

field is spatially uncorrelated, the fitted power-law

functions are not scale dependent. In addition, large

regions of light precipitation are completely removed by

randomly sampling the domain because it is unlikely

that the random sampling will result in contiguous pixels

with only light precipitation, which results in an increase

in both the leading coefficient and the exponent of the

fitted power-law relationships. By comparing Figs. 8 and

12, one sees that as D increases, the fits based on the

actual model output approach those for the randomly

sampled model output.

Another aspect of the results presented herein that

deserves discussion is the difference in the power-law

coefficients between the area-averaged model output

at a height of 2.5 km (Fig. 8) and the model output at the

surface (Fig. 10); the coefficients are higher at the sur-

face. The reason for this difference is not related to the

difference in the analysis being performed at the surface

versus a height of 2.5 km. Instead, the differences are

due to the area averaging that is performed on themodel

output. By area averaging the model output at a height

of 2.5 km, m(R) remains constant for a given footprint

size while s(R) decreases. This artifact of the area av-

eraging results in artificially lower s(R) and lower co-

efficients in the fitted power-law relationships (note that

the surface rain rates are not area averaged for the

purpose of formulating a parameterization of rain-rate

variability). This conclusion was confirmed by re-

calculating the fits at all levels at or below a height of

2.5 km using the raw model output (i.e., at the inherent

grid spacing). These fits were found to be nearly iden-

tical to those obtained at the surface (not shown), sug-

gesting that the scale-dependent fits presented in Fig. 11

may be invariant between the surface and a height of

2.5 km.

4. Vertical profiles of s(R) and s(qr)

In addition to constraining the spatial variability of R

at the surface, an understanding of how the variability

changes with height has important implications for, for

example, analyzing cloud-base rain rate. Moreover, a

representation of the variability in s(qr) is useful for

constraining unified cloud models, as discussed in detail

in the introduction. To address these points, the analysis

FIG. 12. As in Fig. 8, but for random samples.
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presented in the previous section is repeated for both R

and qr at all model levels below 5km. The reason for

putting a threshold of 5 km on the analysis is because this

location roughly corresponds to the melting level; the

rain fraction quickly approaches 0 at levels above this

height, resulting in inadequate statistics.

Each joint PDF is fitted using a power-law function, and

the corresponding coefficients and exponents are shown in

Figs. 13a and 13b.With regard to qr, the fitted coefficient is

smallest just below the melting level, which is due to the

large source of rain from the melting of graupel and/or

snow. As expected, the coefficient is smallest for the

smallestD and increases with increasingD (see section 3c).

As one moves downward, the coefficient increases

monotonically (except for a slight deviation from mono-

tonicity near the surface). If the exponent of the fitted

power-law relationships were uniformly identical to 1

at all levels, we could use the leading coefficient to

understand how the variability changes with height.

However, the exponents exceed 1 for both R and qr at

all levels. For R, the exponent decreases as one moves

downward, whereas for qr, the exponent tends to in-

crease as one moves downward. Moreover, the profiles

of the leading coefficients for R and qr exhibit different

characteristics shapes.

To examine further the differences in the profiles of

the fitted coefficients and exponents, we show the av-

erage of the within-rain footprint-scale means and

standard deviations forR and qr in Fig. 14. It is important

to remember that these profiles are not domain aver-

ages; instead, they depict the average of the condition-

ally averaged means and standard deviations within

each averaging region. According to these profiles, the

footprint-scalem(qr) increases rapidly below themelting

level, becomes nearly constant with height, and then

decreases toward the surface. Moreover, s(R) simply

increases down to a height of approximately 2.4 km

for all D before decreasing toward the surface. When

examining the relative standard deviation s/m(qr)

(Fig. 14c), however, the characteristic shape of the fitted

leading coefficient in the power-law relationships shown

in Fig. 13b is obtained, indicating that the coefficient of

the power-law fit is indicative of the relative dispersion

in the qr field. The same conclusion can bemade forR by

comparing with Fig. 14g. Moreover, if we use the fitted

coefficients and exponents shown in Fig. 13 to estimate

s(qr) and s(R) based on the mean profiles shown in

Figs. 14a and 14e, we obtain the characteristic profiles of

the relative dispersion, demonstrating that the fitted

relationships are capable of representing the model-

predicted variability in both the qr and R fields.

To represent the results presented in Fig. 13 quanti-

tatively, the coefficients and exponents are fitted to lin-

ear functions ofD at several levels, which is similar to the

analysis that was conducted in the previous section, re-

sulting in the parameterization outlined in Fig. 11 and

Eqs. (8)–(13). In this case, however, the parameters

(i.e., m1, m2, x1, and x2) are functions of z. These

FIG. 13. Profiles of the power-law parameters, i.e., the leading coefficient (black) and exponent (red) for the (a) rain rate and

(b) rainwater mixing ratio as a function of height. The different averaging areas are denoted as follows: D of 10 (dots), 20 (asterisks), 40

(circles), and 60 (squares) km.
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height-dependent parameters are listed in Tables 4

and 5. Note that these height-dependent parameters

are based on the tropical case explored in this study.

The results presented in Figs. 13 and 14—in particular,

the differences in the profiles of m(R) and m(qr)—are

particularly intriguing and warrant a mechanistic ex-

planation. The processes controlling qr are not neces-

sarily identical to those controlling R. For example, qr
can increase below the melting level because of the ad-

dition of graupel and/or snow that melts and can de-

crease because of evaporation. These processes have

similar effects on R. Self-collection of raindrops has no

effect on qr but acts to increase R (mean drop size in-

creases, which acts to increase the raindrop terminal fall

speeds). In addition, air density increases as one moves

downward, which can also result in a more rapid change

in R when compared with that of qr. These are likely the

reasons that m(R) does not decrease as rapidly as qr
below approximately 2.4 km.

5. Conclusions

Radar-retrieved and model-predicted estimates of R

for the TWP-ICE IOP are used herein to evaluate

subgrid-scale variability in R for a variety of scales and

to formulate a parameterization for the surface vari-

ability in R that can be used in large-scale modeling

frameworks, for example, CLUBB. The model output

is further explored to provide scale- and height-

dependent relations for the spatial variability of both

FIG. 14. Average of the within-rain footprint-scale (a),(e) means and (b),(f) standard deviations. Also shown is the ratio s/m based on

(c),(g) themodel output and (d),(h) using the parameterization defined in Tables 4 and 5. Shown are (top) qr and (bottom)R. The different

footprint sizes are denoted as follows: D 5 10 (solid line), 20 (asterisks), 40 (open circles), and 60 (open squares) km.
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R and qr as a function of the resolved grid-scale means.

Overall, good agreement is found between the radar-

retrieved and model-predicted estimates of R over the

10-day analysis period centered around the TWP-ICE

IOP, including both active and suppressed phases of the

summer monsoon. Both the model and radar suggest a

close relationship between s(R) and m(R); other vari-

ables are found to be less strongly correlated with s(R).

Because the ratio s/m(R) is found to be asymptotic and

exhibits large variability for small m(R), we simply pa-

rameterize s(R) as a function of m(R) using both the

model output and radar data.

Based on the overall good agreement between the

area-averaged model output and radar data at a height

of 2.5 km, the model output for the surface (at the

model’s inherent grid spacing) is used to formulate a

scale-dependent power-law parameterization for s(R)

as a function of m(R) [s(R) 5 am(R)b] in which both

a and b are linear functions of D (see section 3b). This

formulation can be easily implemented in large-scale

models to represent more accurately the subgrid-scale

variability inR.Moreover, a relationship is also presented

to relate m(R) to the shape parameter of the rain-rate

gamma distribution.

The confidence in the model output as based on a

detailed comparison with radar observations allowed

us to mine the model output further and explore the

height dependence of the spatial variability in both R

and qr, which is important for understanding the rain

rate at cloud base and predicting the formation of rain

aloft, respectively. Characteristic features in the pro-

files of the fitted power-law coefficients were observed

for both R and qr. To be specific, we found that the

spatial variability of qr increased as one moved down-

ward from the melting level, which we attributed to a

combination of evaporation (i.e., smaller drops are

preferentially evaporated, thus broadening the range

of qr), melting, and self-collection. Similar changes

were identified for R except with a pronounced de-

crease in the spatial variability below approximately

1.5 km, which was attributed to a convergence toward

a narrower range of terminal fall speeds. The result-

ing parameterizations were provided in the form of

lookup tables.

TABLE 4. Scale-dependent parameter values for the fitted power-law relation used to predict the spatial variability of qr.

s[qr(z)] 5 a(z)m[qr(z)]
b(z)

a(z) 5 m1(z)D 1 x1(z) [(g kg
21)12b] b(z) 5 m2(z)D 1 x2(z) (unitless)

z (m) m1(z) [(g kg
21)12b km21] x1(z) [(g kg

21)12b] m2(z) (km
21) x2(z) (unitless)

250 2.80 3 1022 1.48 21.73 3 1023 1.23

750 2.74 3 1022 1.49 21.92 3 1023 1.23

1250 2.61 3 1022 1.47 22.19 3 1023 1.23

1750 2.69 3 1022 1.31 21.97 3 1023 1.21

2250 2.62 3 1022 1.18 21.81 3 1023 1.21

2750 2.68 3 1022 1.00 21.58 3 1023 1.19

3250 2.61 3 1022 0.84 21.50 3 1023 1.16

3750 2.44 3 1022 0.72 21.54 3 1023 1.14

4250 2.23 3 1022 0.66 21.59 3 1023 1.12

4750 3.62 3 1022 0.96 21.31 3 1023 1.22

TABLE 5. As in Table 4, but for R.

s[R(z)] 5 a(z)m[R(z)]b(z)

a(z) 5 m1(z)D 1 x1(z) [(mmh21)12b] b(z) 5 m2(z)D 1 x2(z) (unitless)

z (m) m1(z) [(mmh21)12b km21] x1(z) [(mmh21)12b] m2(z) (km
21) x2(z) (unitless)

250 2.15 3 1022 0.54 23.12 3 1023 1.32

750 2.22 3 1022 0.55 23.01 3 1023 1.32

1250 2.34 3 1022 0.53 23.42 3 1023 1.36

1750 2.29 3 1022 0.53 22.88 3 1023 1.33

2250 2.23 3 1022 0.50 22.73 3 1023 1.32

2750 2.20 3 1022 0.48 22.50 3 1023 1.31

3250 2.17 3 1022 0.45 22.02 3 1023 1.30

3750 2.13 3 1022 0.44 21.58 3 1023 1.28

4250 2.08 3 1022 0.42 21.04 3 1023 1.27

4750 2.00 3 1022 0.40 23.12 3 1024 1.26
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The primarymotivation for this study is to parameterize

the subgrid-scale variabilityR and qr for use in large-scale

models, although the results are likely also applicable to

the field of satellite retrievals. For example, an accurate

representation of the spatial heterogeneity of R within a

given sensor field of view (i.e., beamfilling) has been rec-

ognized by the community as a major problem (e.g., Yang

et al. 2006; Turk et al. 2008; Sapiano and Arkin 2009;

Wolff and Fisher 2009). Moreover, Kirstetter et al. (2015)

recently demonstrated that satellite-based precipitation

radars are prone to errors that are inherently related

to the assumed nonuniform beamfilling approach. The

results presented herein provide a useful tool for con-

straining subpixel-scale variability in satellite-retrieved

rain-rate and rainwater mixing ratio estimates, at least

over the tropics.
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APPENDIX

Continental Convection Case

To investigate the robustness of the s(R)–m(R) re-

lationships proposed in this work, an idealized simula-

tion of a continental squall line is performed. The setup

is nearly identical to that used in Lebo and Morrison

(2014) and Lebo (2014). The only differences between

those simulations and the one performed herein are that

the microphysics model used here is the conventional

Morrison et al. (2009) two-moment scheme (i.e., the

same model used for the TWP-ICE simulations except

that the droplet number concentration is fixed at

250 cm23) and that the horizontal and vertical resolu-

tions are increased to 250 and 120m, respectively. The

case simulated herein has been simulated in other

frameworks and has produced results that agree well

with observations (Morrison et al. 2012). The final 4 h of

the 8-h simulation is used for the following analysis.

Analogous to the results presented for the TWP-ICE

simulations and observations, joint PDFs of s(R) and

m(R) are computed for different sampling footprints.

Because of the smaller domain (at least in the y di-

rection) used for the squall-line simulation, the 60-km

sampling footprint is omitted. Fewer samples are used to

FIG. A1. As in Fig. 8, but for the idealized continental squall-line

simulation.
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construct each joint PDF than were used for the TWP-

ICE results because the squall-line domain is smaller

and the simulation is shorter (4 h of analysis vs 10 days).

The joint PDFs for the continental squall-line simulation

are more confined than those for the tropical convec-

tion simulations (cf. Fig. 8 with Fig. A1). This may be

due to several factors, including the extent of organi-

zation in the simulated systems and the sampling size.

Of interest is that the coefficients of the power-law fit

are nearly identical to those computed for the TWP-

ICE simulation and observations. The exponent is found

to be slightly smaller for the squall-line simulation than

for the tropical convection simulation, although the

exponent corresponds well to that predicted based on

the TWP-ICE observations. The similarities in the fits

presented in Figs. 8 and A1 are remarkable given the

substantial differences between the two simulations:

different boundary conditions (periodic vs open in the

line-normal direction and periodic in the line-parallel

direction for the tropical convection and squall-line

simulations, respectively), different forcings (the squall-

line simulation is only forced for the first 1h whereas the

TWP-ICE simulation is forced throughout the simula-

tion period), different resolutions (500 vs 250m for the

tropical convection and squall-line simulations, respec-

tively), and different levels of organization (isolated,

single-cell convection vs well-organized linear convec-

tion in the tropical convection and squall-line simula-

tions, respectively).

Although these results cannot be used to definitively

establish a universal relationship between s(R) and

m(R), the similarities are promising. Future endeavors

that consider a broad array of cloud types are needed to

determine either a universal relationship or a regime-

dependent relationship between s(R) and m(R).
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